Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Cancer ; 15(10): 3010-3023, 2024.
Article in English | MEDLINE | ID: mdl-38706909

ABSTRACT

Given the heterogeneity of tumors, there is an urgent need for accurate prognostic parameters in prostate cancer (PCa) patients. Lipid metabolism (LM) reprogramming and oxidative stress (OS) play a vital role in the progression of PCa. In this work, we identified five LM-OS-related genes (including ACOX2, PPRAGC1A, PTGS1, PTGS2, and HAO1) associated with the biochemical recurrence (BCR) of PCa. Subsequently, a prognostic signature was established based on these five genes. Kaplan-Meier survival estimates, receiver operating characteristic curves, and relationship analysis between risk score and clinical characters were applied to measure the robustness of the signature in an external cohort. A nomogram of risk score combined with clinical characteristics was constructed for clinical application. Functional enrichment analysis suggested that the underlying mechanism related to the signature included the calcium signaling, lipid transport, and cell cycle signaling pathways. Furthermore, WEE1 inhibitor was identified as a potential agent related to the cell cycle for high-risk patients. The mRNA expression and the prognostic value of the five genes were determined, and ACOX2 was identified as the key gene related to the prognostic signature. The protein expression of ACOX2 was measured in a prostate tissue microarray through an immunohistochemistry assay, confirming the bioinformatics results. By constructing the ACOX2-overexpressing PCa cell lines PC-3 and 22Rv1, the biological function of PCa cells was investigated. The cell viability, colony formation, migration, and invasion ability of PCa cell lines overexpressing ACOX2 were hindered. Decreased cellular lipid content and elevated cellular ROS content were observed in ACOX2-overexpressing PCa cell lines with reduced G2/M phases. In conclusion, this work presents the first prognostic signature specifically focused on LM-OS for PCa. ACOX2 could serve as a favorable indicator for the BCR in PCa. Further experiments are required to identify the potential underlying mechanism.

2.
World J Urol ; 42(1): 273, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689135

ABSTRACT

PURPOSE: The purpose of this study is to evaluate the incidence, risk factors, and salvage management of retrievable covered expandable metallic stent (RCEMS) migration in patients with persistent benign ureter strictures. MATERIALS AND METHODS: A retrospective study was performed on 117 consecutive patients who underwent implantation of RCEMS. Univariate and multivariate analyses were used to identify prognostic factors for stent migration, including stricture location and length, hydronephrosis-cortex ratio, ureteral dilation, and the diameter of the narrowest portion of the stricture. RESULTS: Stent migration occurred in 22 (19.5%) of 113 patients who met inclusion criteria. Of the 22 patients, 16 (72.7%) had ordinary ureteral stricture, 3 (13.6%) had stricture in transplanted kidneys, and 3 patients (13.6%) had ureter stricture in orthotopic neobladders. The mean creatinine for the entire cohorts showed significant improvement (p = 0.038). Multivariate analysis identified the following prognostic factors for migration: distal ureteral stricture (p = 0.006), patients who underwent balloon dilation (p = 0.003), hydronephrosis-cortex ratio ≧10 (p = 0.017), larger diameter of wasting of RCEMS (p < 0.001), and patients with a shorter stricture length (p = 0.006). Salvage management was required in 4 of the 22 patients. The strictures in the remaining 18 patients improved with observation. CONCLUSIONS: Stent migration is more likely to occur in patients with the five prognostic factors mentioned above. Our study developed a nomogram to predict stent migration in patients with ureteral strictures treated using RCEMS.


Subject(s)
Foreign-Body Migration , Ureteral Obstruction , Humans , Male , Retrospective Studies , Ureteral Obstruction/etiology , Ureteral Obstruction/therapy , Ureteral Obstruction/surgery , Female , Middle Aged , Foreign-Body Migration/epidemiology , Risk Factors , Adult , Aged , Device Removal , Self Expandable Metallic Stents , Prosthesis Failure , Constriction, Pathologic , Stents/adverse effects , Prosthesis Design , Young Adult
3.
Cancer Sci ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480904

ABSTRACT

Dissolving the lipid droplets in tissue section with alcohol during a hematoxylin and eosin (H&E) stain causes the tumor cells to appear like clear soap bubbles under a microscope, which is a key pathological feature of clear cell renal cell carcinoma (ccRCC). Mitochondrial dynamics have been reported to be closely associated with lipid metabolism and tumor development. However, the relationship between mitochondrial dynamics and lipid metabolism reprogramming in ccRCC remains to be further explored. We conducted bioinformatics analysis to identify key genes regulating mitochondrial dynamics differentially expressed between tumor and normal tissues and immunohistochemistry and Western blot to confirm. After the target was identified, we created stable ccRCC cell lines to test the impact of the target gene on mitochondrial morphology, tumorigenesis in culture cells and xenograft models, and profiles of lipid metabolism. It was found that mitofusin 2 (MFN2) was downregulated in ccRCC tissues and associated with poor prognosis in patients with ccRCC. MFN2 suppressed mitochondrial fragmentation, proliferation, migration, and invasion of ccRCC cells and growth of xenograft tumors. Furthermore, MFN2 impacted lipid metabolism and reduced the accumulation of lipid droplets in ccRCC cells. MFN2 suppressed disease progression and improved prognosis for patients with ccRCC possibly by interrupting cellular lipid metabolism and reducing accumulation of lipid droplets.

4.
Mitochondrion ; 75: 101847, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246334

ABSTRACT

Mitochondrial dynamics and autophagy play essential roles in normal cellular physiological activities, while abnormal mitochondrial dynamics and mitochondrial autophagy can cause cancer and related disorders. Abnormal mitochondrial dynamics usually occur in parallel with mitochondrial autophagy. Both have been reported to have a synergistic effect and can therefore complement or inhibit each other. Progress has been made in understanding the classical mitochondrial PINK1/Parkin pathway and mitochondrial dynamical abnormalities. Still, the mechanisms and regulatory pathways underlying the interaction between mitophagy and mitochondrial dynamics remain unexplored. Like other existing reviews, we review the molecular structure of proteins involved in mitochondrial dynamics and mitochondrial autophagy, and how their abnormalities can lead to the development of related diseases. We will also review the individual or synergistic effects of abnormal mitochondrial dynamics and mitophagy leading to cellular proliferation, differentiation and invasion. In addition, we explore the mechanisms underlying mitochondrial dynamics and mitochondrial autophagy to contribute to targeted and precise regulation of mitochondrial function. Through the study of abnormal mitochondrial dynamics and mitochondrial autophagy regulation mechanisms, as well as the role of early disease development, effective targets for mitochondrial function regulation can be proposed to enable accurate diagnosis and treatment of the associated disorders.


Subject(s)
Autophagy , Mitochondrial Dynamics , Molecular Structure , Mitophagy , Ubiquitin-Protein Ligases/metabolism , Mitochondria/metabolism
5.
J Endourol ; 37(12): 1241-1247, 2023 12.
Article in English | MEDLINE | ID: mdl-37756365

ABSTRACT

Introduction: Percutaneous nephrolithotomy (PCNL) is the recommended treatment for 2-4-cm renal stones. Minimally invasive PCNL (MPCNL) with ≤22F sheath was frequently used instead of standard PCNL. MPCNL uses pressurized irrigation to flush out stone fragments through a conventional nephrostomy sheath (cNS), which may result in higher intrarenal pressure (IRP) and longer operating time. The novel vacuum-assisted nephrostomy sheath (vaNS) was developed to mitigate higher IRP and to facilitate stone removal. It might improve the performance of MPCNL. This prospective and randomized trial compares these two sheaths. Materials and Methods: In total, 120 patients with 2-4-cm renal stones were accrued in six tertiary medical centers with equal numbers in 2021. In total, 120 patients underwent mPCNL, 60 using 18F cNS and 60 using 18F vaNS, in a prospective and randomized assignment. The primary outcome measurement is decrease in IRP. The secondary outcome is efficacy in stone retrieval. Results: The IRP was lower with vaNS than with cNS: mean IRP during lithotripsy was 12.0 ± 2.7 mm Hg with vaNS vs 20.4 ± 6.0 mm Hg with cNS, p = 0.000. IRP duration ≥30 mm Hg was shorter with vaNS than with cNS (6.7 ± 7.4 seconds vs 113.4 ± 222.7 seconds, p = 0.001). vaNS has shorter stone removal time (26.9 ± 14.3 minutes vs 35.7 ± 11.8 minutes, p = 0.000). Stone extraction rate was higher (166.4 ± 88.1 mm3/min vs 90.4 ± 31.7 mm3/min, p = 0.000). Stone grasper usage was less (1.4 ± 2.6 vs 11.9 ± 9.7, p = 0.000). vaNS maintained the safety profile. Blood loss, creatinine changes, perioperative complications, and hospital stays were the same in both groups, all p > 0.05. Conclusion: MPCNL for stones 2-4 cm using vaNS has shorter stone removal time, higher stone extraction rate, and less use of stone extractor. vaNS is superior to cNS at reducing IRP and is associated with improved stone free rates at 3 days but not at 30 days postoperatively. The trial was registered with Chinese Clinical Trial Registry (ClinicalTrials.gov, NCT ChiCTR2000039681).


Subject(s)
Kidney Calculi , Nephrolithotomy, Percutaneous , Nephrostomy, Percutaneous , Humans , Prospective Studies , Treatment Outcome , Kidney Calculi/surgery
6.
Signal Transduct Target Ther ; 8(1): 303, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37582751

ABSTRACT

The therapeutic efficacy of metformin in prostate cancer (PCa) appears uncertain based on various clinical trials. Metformin treatment failure may be attributed to the high frequency of transcriptional dysregulation, which leads to drug resistance. However, the underlying mechanism is still unclear. In this study, we found evidences that metformin resistance in PCa cells may be linked to cell cycle reactivation. Super-enhancers (SEs), crucial regulatory elements, have been shown to be associated with drug resistance in various cancers. Our analysis of SEs in metformin-resistant (MetR) PCa cells revealed a correlation with Prostaglandin Reductase 1 (PTGR1) expression, which was identified as significantly increased in a cluster of cells with metformin resistance through single-cell transcriptome sequencing. Our functional experiments showed that PTGR1 overexpression accelerated cell cycle progression by promoting progression from the G0/G1 to the S and G2/M phases, resulting in reduced sensitivity to metformin. Additionally, we identified key transcription factors that significantly increase PTGR1 expression, such as SRF and RUNX3, providing potential new targets to address metformin resistance in PCa. In conclusion, our study sheds new light on the cellular mechanism underlying metformin resistance and the regulation of the SE-TFs-PTGR1 axis, offering potential avenues to enhance metformin's therapeutic efficacy in PCa.


Subject(s)
Metformin , Prostatic Neoplasms , Male , Humans , Metformin/pharmacology , Metformin/therapeutic use , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Transcription Factors , Cell Cycle
7.
ACS Omega ; 7(30): 26701-26714, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936419

ABSTRACT

To be prepared for the capacity diving phenomena in future capacity deterioration, a hybrid method for predicting the remaining useful life (RUL) of lithium-ion batteries (LIBs) is proposed. First, a novel empirical degradation model is proposed in this paper to improve the generalization applicability and accuracy of the algorithm. A particle filter (PF) algorithm is then implemented to generate the original error series using prognostic results. Next, a discrete wavelet transform (DWT) algorithm is designed to decompose and reconstruct the original error series to improve the data validity by reducing the local noise distribution information. A relatively less approximate component is selected as the reconstructed error series, which preserves the primary evolutionary information. Finally, to make full use of the information contained in the PF algorithm's prognosis results, the support vector regression (SVR) algorithm is utilized to correct the PF prognosis results. The results indicate that long-short-term deterioration progress and RUL prediction tasks can both benefit from significant performance improvements.

8.
Comput Intell Neurosci ; 2022: 1314362, 2022.
Article in English | MEDLINE | ID: mdl-35795737

ABSTRACT

Book binding is the procedure of manually accumulating a book in codex format from a well-ordered pile of paper sheets, which are folded together into sections or occasionally left as a stack of individual sheets. The books undergo binding into different shapes and sizes. Numerous kinds of book bindings are available, each of which comes with its own merits and demerits. Some of them are highly durable, some of them are light-weight, and some of them are attractive. Therefore, it is needed to effectively identify and classify the shape and type of book bindings. With this motivation, this paper develops a butterfly optimization algorithm with a deep learning-enabled book binding classification (BOADL-BBC) model. The major intention of the BOADL-BBC technique is to identify and categorise three different types of book bindings from the input images, namely, hard binding, soft binding, and long-stitch binding. The proposed BOADL-BBC technique initially employs a DL-based Inception v3 model to derive useful feature vectors from the images. For effective classification of book bindings, the BOA with wavelet kernel extreme learning machine (WKELM) model can be applied. The weight and bias values involved in the WKELM model can be effectively adjusted by the use of BOA for book binding classification shows the novelty of the work. To ensure the enhanced performance of the BOADL-BBC technique, a series of simulations were carried out using a set of images that people collected on their own. The experimental results stated that the BOADL-BBC technique has obtained a maximum book binding classification accuracy of 95.56%.


Subject(s)
Deep Learning , Algorithms , Books , Humans , Intention , Motivation
9.
Front Cell Dev Biol ; 10: 831329, 2022.
Article in English | MEDLINE | ID: mdl-35531101

ABSTRACT

Given the tumor heterogeneity, most of the current prognostic indicators cannot accurately evaluate the prognosis of patients with prostate cancer, and thus, the best opportunity to intervene in the progression of this disease is missed. E2F transcription factors (E2Fs) have been reported to be involved in the growth of various cancers. Accumulating studies indicate that prostate cancer (PCa) carcinogenesis is attributed to aberrant E2F expression or E2F alteration. However, the expression patterns and prognostic value of the eight E2Fs in prostate cancer have yet to be explored. In this study, The Cancer Genome Atlas (TCGA), Kaplan-Meier Plotter, Metascape, the Kyoto Encyclopedia of Genes and Genomes (KEGG), CIBERSORT, and cBioPortal and bioinformatic analysis were used to investigate E2Fs in patients with PCa. Our results showed that the expression of E2F1-3, E2F5, and E2F6 was higher in prostate cancer tissues than in benign tissues. Furthermore, elevated E2F1-3 and E2F5 expression levels were associated with a higher Gleason score (GS), advanced tumor stage, and metastasis. Survival analysis suggested that high transcription levels of E2F1-3, E2F5, E2F6, and E2F8 were associated with a higher risk of biochemical recurrence. In addition, we developed a prognostic model combining E2F1, E2F6, Gleason score, and the clinical stage that may accurately predict a biochemical recurrence-free survival. Functional enrichment analysis revealed that the E2F family members and their neighboring genes were mainly enriched in cell cycle-related pathways. Somatic mutations in different subgroups were also investigated, and immune components were predicted. Further experiments are warranted to clarify the biological associations between Pca-related E2F family genes, which may influence prognosis via the cell cycle pathway.

10.
Front Oncol ; 11: 726671, 2021.
Article in English | MEDLINE | ID: mdl-34760693

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) carrying wild-type Von Hippel-Lindau (VHL) tumor suppressor are more invasive and of high morbidity. Concurrently, competing endogenous RNA (ceRNA) network has been suggested to play an important role in ccRCC malignancy. In order to understand why the patients carrying wild-type VHL gene have high degrees of invasion and morbidity, we applied bioinformatics approaches to identify 861 differentially expressed RNAs (DE-RNAs) between patients carrying wild-type and patients carrying mutant VHL from The Cancer Genome Atlas (TCGA) database, established a ceRNA network including 122 RNAs, and elected six survival-related DE-RNAs including Linc00942, Linc00858, RP13_392I16.1, hsa-miR-182-5p, hsa-miR-183-5p, and PAX3. Examining clinical samples from our hospital revealed that patients carrying wild-type VHL had significantly higher levels of all six RNAs than those carrying mutant VHL. Patients carrying wild-type VHL had significantly higher risk scores, which were calculated based on expression levels of all six RNAs, than those carrying mutant VHL. Patients with higher risk scores had significantly shorter survival times than those with lower risk scores. Therefore, the risk scores serve well to predict malignancy and prognosis.

11.
Transl Androl Urol ; 10(9): 3579-3590, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34733654

ABSTRACT

BACKGROUND: The incidence of bladder cancer (BCa) in male is approximately three to four times higher than in female, but the oncological outcomes in female patients with BCa are significantly worse than in male patients. Although many biomarkers have been identified in recent decades to predict the prognosis of BCa patients, few of them are able to distinguish the prognosis of BCa patients with gender difference. Aromatase encoded by the CYP19A1 gene catalyzes the conversion of androgens to estrogens. In this study, we investigate the prognosis significance of CYP19A1 expression considering the gender difference in BCa patients from four available public databases. METHODS: Four available public databases of BCa, including GSE13507, TCGA-BLCA, E-MTAB-4321, and E-MTAB-1803, were utilized in this analysis. The overall survival (OS) and progression-free survival (PFS) in different stages and genders were evaluated using the Kaplan-Meier analysis based on the optimal cut-off values of CYP19A1 expression. Then, Gene Set Enrichment Analysis (GSEA) were further performed to explore the potential biologic pathways by altering CYP19A1 expression in BCa patients. RESULTS: The results showed that patients with high CYP19A1 expression had a poorer outcome compared with those with low expression in both BCa cohorts in general. Higher CYP19A1 expression in male patients were significantly associated with shorter survival for either non-muscle-invasive bladder cancer (NMIBC) or muscle-invasive bladder cancer (MIBC). However, female NMIBC patients with high CYP19A1 expression were identified to have a better prognosis, whereas high CYP19A1 expression in female MIBC patients were significantly associated with poorer survival. The result of the GSEA showed that different outcomes in female and male patients with NMIBC were related to the interaction of CYP19A1 and the cell-cycle-related pathways. CONCLUSIONS: These findings demonstrated that CYP19A1 expression might have a potential role in distinguishing the prognosis of female BCa patients dependent on tumor stage. Our results provide new insights for aromatase-mediated BCa therapy.

12.
Oncol Lett ; 22(5): 764, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34589143

ABSTRACT

Double-stranded RNA-specific adenosine deaminase (ADAR1) is a member of the adenosine deaminases acting on RNA family that catalyze the adenosine-to-inosine editing of double-stranded RNA substrates. Several studies have reported that ADAR1 is closely associated with numerous malignancies. However, the functional roles of ADAR1 in prostate cancer (PCa) have not been fully elucidated. Thus, the present study aimed to investigate the effects of ADAR1 on PCa. The results demonstrated that ADAR1 was highly expressed in PCa tissues compared with normal tissues. Furthermore, the protein expression level of ADAR1 was significantly increased in castration-resistant PCa (CRPCa) tissues and CRPCa cell lines. Thus, these findings indicated that ADAR1 may act as a tumor promoter for PCa development. Next, the potential effects of ADAR1-knockdown on the proliferation of DU145 and PC3 cells were investigated. ADAR1 was knocked down via small interfering RNA transfection, which was found to exert antitumor effects on DU145 and PC3 cells at 24 and 48 h post transfection. Furthermore, a significant positive association was observed between ADAR1-knockdown and the apoptosis of DU145 and PC3 cells, which increased the phosphorylation of H2A.X variant histone. The results of the present study indicated a positive association between ADAR1 expression and PCa, which may promote the development of CRPCa. Moreover, ADAR1-knockdown may serve as a tumor suppressor and represent a potential target for the treatment of PCa.

13.
Onco Targets Ther ; 14: 3353-3366, 2021.
Article in English | MEDLINE | ID: mdl-34079281

ABSTRACT

BACKGROUND: ALDOA plays an essential role in cancer progression in different human cancers; however, its function has not been understood in prostate cancer (PCa). METHODS: Associations of ALDOA expression with clinicopathological features and patient prognosis in PCa were evaluated based on data obtained from the Taylor database and our clinical tissue microarray. The potential roles of ALDOA in malignant progression were verified using a series of in vivo and in vitro experiments after stable ALDOA overexpression and knockdown in DU145 and PC3 cell lines. An aldolase A inhibitor was used to determine the effects of inhibition of ALDOA on PCa cell proliferation. RESULTS: Higher expression of ALDOA was positively correlated with the incidence of postoperative metastasis and biochemical recurrence (BCR) and may predict poor prognosis in PCa patients. In vivo experiments demonstrated that overexpression of ALDOA could significantly promote cell proliferation, prolong the cell cycle, and significantly reduce the apoptosis rate of PCa cells. Knockdown of expression of ALDOA could inhibit the proliferation and shorten the cell cycle of PCa cells significantly, with no significant effects on cell apoptosis (P > 0.05). In vitro experiments showed that overexpression of ALDOA could significantly promote tumor growth (P < 0.05), while treatment with the Aldolase A inhibitor naphthol AS-E phosphate dose-dependently suppressed the growth of PCa cells (P < 0.01). The analysis of datasets from the Taylor database showed that there was negative regulatory relationship between the expression of ALDOA and MYPT1 (P < 0.001). CONCLUSION: Our study revealed that ALDOA played an important role in the progression of PCa. The MYPT1-ALDOA signaling axis may be a new target for the clinical treatment of PCa patients given its negative regulatory relationship. Our study suggests that Aldolase A inhibitors may represent a novel approach to inhibit the growth of PCa.

14.
J Exp Clin Cancer Res ; 40(1): 188, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34098990

ABSTRACT

BACKGROUND: Hypoxia signaling, especially the hypoxia inducible factor (HIF) pathway, is a major player in clear cell renal cell carcinoma (ccRCC), which is characterized by disorders in lipid and glycogen metabolism. However, the interaction between hypoxia and lipid metabolism in ccRCC progression is still poorly understood. METHODS: We used bioinformatic analysis and discovered that glycerol-3-phosphate dehydrogenase 1 (GPD1) may play a key role in hypoxia and lipid metabolism pathways in ccRCC. Tissue microarray, IHC staining, and survival analysis were performed to evaluate clinical function. In vitro and in vivo assays showed the biological effects of GPD1 in ccRCC progression. RESULTS: We found that the expression of GPD1 was downregulated in ccRCC tissues, and overexpression of GPD1 inhibited the progression of ccRCC both in vivo and in vitro. Furthermore, we demonstrated that hypoxia inducible factor-1α (HIF1α) directly regulates GPD1 at the transcriptional level, which leads to the inhibition of mitochondrial function and lipid metabolism. Additionally, GPD1 was shown to inhibit prolyl hydroxylase 3 (PHD3), which blocks prolyl-hydroxylation of HIF1α and subsequent proteasomal degradation, and thus reinforces the inhibition of mitochondrial function and phosphorylation of AMPK via suppressing glycerol-3-phosphate dehydrogenase 2 (GPD2). CONCLUSIONS: This study not only demonstrated that HIF1α-GPD1 forms a positive feedforward loop inhibiting mitochondrial function and lipid metabolism in ccRCC, but also discovered a new mechanism for the molecular basis of HIF1α to inhibit tumor activity, thus providing novel insights into hypoxia-lipid-mediated ccRCC therapy.


Subject(s)
Carcinoma, Renal Cell/genetics , Glycerolphosphate Dehydrogenase/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mitochondria/genetics , AMP-Activated Protein Kinase Kinases/genetics , Aged , Animals , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Female , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Lipid Metabolism/genetics , Male , Mice , Middle Aged , Signal Transduction/genetics , Tumor Hypoxia
15.
J Cancer ; 12(1): 232-243, 2021.
Article in English | MEDLINE | ID: mdl-33391420

ABSTRACT

Background and aim: Silencing the expression of ACACA inhibits cell proliferation and induces apoptosis in prostate cancer LNCaP cells. However, the role of ACACA in other prostate cancer cells is not fully understood. Also, the effect of knocking down ACACA gene on mitochondria remains unclear. This study aimed to discover the specific role of ACACA gene in prostate cancer (PCa) DU145 and PC3 cells as well as its effects on mitochondrial potential. Methods: The expression of ACACA gene was detected in human prostate cancer tissue microarrays and assessed in different clinical stages. Then, prostate cancer cell lines with low expression of ACACA were constructed to evaluate the changes in their cell cycle, proliferation, and metabolites. The effect of ACACA on tumor formation in vivo was analyzed. Also, mito-ATP production, mitochondrial staining, and mtDNA, nicotinamide adenine dinucleotide (NAD+/NADH), and reactive oxygen species (ROS) levels were detected. Results: ACACA was expressed more strongly in prostate cancer tissues. The expression level of ACACA was higher in patients with advanced PCa than in patients with lower grades. The proliferation ability reduced in ACACA-knockdown cells. In in vivo tests, the tumor volume and weight were lower in the experimental group than in the control group. Mito-ATP production decreased significantly after ACACA suppression, mtDNA levels and MitoTracker staining decreased in the experimental group. The ratio of NAD+/NADH and ROS levels were upregulated in the experimental group. Conclusion: Targeting ACACA gene and mitochondria might serve as a novel therapy for prostate cancer treatment.

16.
Cancer Manag Res ; 12: 6149-6163, 2020.
Article in English | MEDLINE | ID: mdl-32801864

ABSTRACT

PURPOSE: Citrate synthase (CS) is a rate-limiting enzyme in the citrate cycle and is capable of catalyzing oxaloacetate and acetyl-CoA to citrate. CS has been uncovered to be upregulated in a variety of cancers, and its expression and clinical significance in prostate cancer (PCa) remain unknown. METHODS: In this study, we examined the association between CS expression level and clinicopathological features of prostate cancer patients in a TMA cohort and the public cancer database (The Cancer Genome Atlas-Prostate Adenocarcinoma, TCGA-PRAD). The CS knockdown cell lines were constructed to study the effects of CS downregulation on proliferation, colony formation, migration, invasion, and cell cycle of prostate cancer cells in vitro. And the effect of CS downregulation on tumor growth in mice was studied in vivo. In addition, the metabolomics and mitochondrial function were detected in the CS knockdown cell lines. RESULTS: CS expression level in PCa tissues was higher than that in normal tissues (P < 0.05). CS upregulation was significantly associated with high Gleason score (P < 0.05), advanced pathological stage (P < 0.001), and biochemical recurrence (P < 0.001). Functionally, decreased expression of CS inhibited PCa cell proliferation, colony formation, migration, invasion and cell cycle in vitro, and inhibited tumor growth in vivo. In addition, CS downregulation exerted potential inhibitory effects on the lipid metabolism and mitochondrial function of PCa cells. CONCLUSION: In conclusion, these findings suggested that CS upregulation may contribute to the aggressive progression and poor prognosis of PCa patients, which might be partially associated with its influences on the cell lipid metabolism and mitochondrial function.

17.
Mol Carcinog ; 59(8): 897-907, 2020 08.
Article in English | MEDLINE | ID: mdl-32319143

ABSTRACT

Lactate dehydrogenase isozyme (LDH) is a tetramer constituted of two isoforms, LDHA and LDHB, the expression of which is associated with cell metabolism and cancer progression. Our previous study reveals that CC-chemokine ligand-18 (CCL18) is involved in progression of prostate cancer (PCa).This study aims to investigate how CCL18 regulates LDH isoform expression, and therefore, contributes to PCa progression. The data revealed that the expression of LDHA was upregulated and LDHB was downregulated in PCa cells by CCL18 at both messenger RNA and protein levels. The depletion of CCR8 reduced the ability of CCL18 to promote the proliferation, migration, and lactate production of PCa cells. Depletion of a CCR8 regulated transcription factor, ARNT, significantly reduced the expression of LDHA. In addition, The Cancer Genome Atlas dataset analyses revealed a positive correlation between CCR8 and ARNT expression. Two dimension difference gel electrophoresis revealed that the LDHA/LDHB ratio was increased in the prostatic fluid of patients with PCa and PCa tissues. Furthermore, increased LDHA/LDHB ratio was associated with poor clinical outcomes of patients with PCa. Together, our results indicate that the CCR8 pathway programs LDH isoform expression in an ARNT dependent manner and that the ratio of LDHA/LDHB has the potential to serve as biomarkers for PCa diagnosis and prognosis.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Biomarkers, Tumor/metabolism , Chemokines, CC/metabolism , Gene Expression Regulation, Neoplastic , L-Lactate Dehydrogenase/metabolism , Prostatic Neoplasms/pathology , Receptors, CCR8/metabolism , Apoptosis , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Biomarkers, Tumor/genetics , Cell Proliferation , Chemokines, CC/genetics , Humans , Isoenzymes , L-Lactate Dehydrogenase/genetics , Male , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, CCR8/genetics , Survival Rate , Tumor Cells, Cultured
18.
BMC Cancer ; 20(1): 289, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32252682

ABSTRACT

BACKGROUND: Solute Carrier Family 6 Member 1 (SLC6A1) has been identified as a cancer-promoting gene in various human cancers, such as clear cell renal cell carcinoma and ovarian cancer. However, its roles in prostate cancer (PCa) has not been fully elucidated. The aim of this study was to investigate the expression and clinical significance of SLC6A1 in PCa tissues and its effect on drug resistance to docetaxel in PCa. METHODS: Expression patterns of SLC6A1 protein in PCa tissues were examined by immunohistochemistry based on Tissue microarray. Associations of SLC6A1 protein expression with various clinicopathological features and patients' prognosis of PCa were also statistically evaluated based on TCGA data. Roles of SLC6A1 deregulation in prostate carcinogenesis and drug resistance was further determined in vitro and in vivo experiments. RESULTS: Based on TCGA Dataset, SLC6A1 expression was markedly higher in patients with high Gleason score, advanced clinical stage and positive biochemical recurrence than those with control features (all P < 0.05). Both unvariate and multivariate analyses demonstrated that SLC6A1 expression was significantly associated with biochemical recurrence-free survival in PCa patients. In addition, enforced expression of SLC6A1 effectively promoted cell proliferation, migration and invasion of PCa cells in vitro. Moreover, the inhibition of SLC6A1 suppressed the tumor growth in vivo. Additionally, immunohistochemical notches of PCNA and MMP-9 in the low-expression cluster were pointedly lower compared to those of NC group. Finally, the cell viability revealed that the overexpression of SLC6A1 obviously promoted the PCa cell resistant to docetaxel (DTX), and the transplanted tumor in the overexpression group had no significant reduction compared with the untreated group. CONCLUSIONS: Our data suggest that SLC6A1 overexpression may be associated with aggressive progression and short biochemical recurrence-free survival of PCa, and may be related to the resistance to docetaxel therapy.


Subject(s)
Biomarkers, Tumor/metabolism , Docetaxel/pharmacology , Drug Resistance, Neoplasm , GABA Plasma Membrane Transport Proteins/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Prostatic Neoplasms/pathology , Aged , Animals , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation , Computational Biology/methods , Databases, Genetic/statistics & numerical data , Disease Progression , GABA Plasma Membrane Transport Proteins/genetics , Humans , Male , Mice , Mice, Nude , Prognosis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Survival Rate , Xenograft Model Antitumor Assays
19.
Cancer Res ; 80(11): 2150-2162, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32179514

ABSTRACT

Metformin is an oral drug widely used for the treatment of type 2 diabetes mellitus. Numerous studies have demonstrated the value of metformin in cancer treatment. However, for metformin to elicit effects on cancer often requires a high dosage, and any underlying mechanism for how to improve its inhibitory effects remains unknown. Here, we found that low mRNA expression of glycerol-3-phosphate dehydrogenase 1 (GPD1) may predict a poor response to metformin treatment in 15 cancer cell lines. In vitro and in vivo, metformin treatment alone significantly suppressed cancer cell proliferation, a phenotype enhanced by GPD1 overexpression. Total cellular glycerol-3-phosphate concentration was significantly increased by the combination of GPD1 overexpression and metformin treatment, which suppressed cancer growth via inhibition of mitochondrial function. Eventually, increased reactive oxygen species and mitochondrial structural damage was observed in GPD1-overexpressing cell lines treated with metformin, which may contribute to cell death. In summary, this study demonstrates that GPD1 overexpression enhances the anticancer activity of metformin and that patients with increased GPD1 expression in tumor cells may respond better to metformin therapy. SIGNIFICANCE: GPD1 overexpression enhances the anticancer effect of metformin through synergistic inhibition of mitochondrial function, thereby providing new insight into metformin-mediated cancer therapy.


Subject(s)
Glycerolphosphate Dehydrogenase/metabolism , Glycerophosphates/metabolism , Metformin/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , A549 Cells , Adenosine Triphosphate/biosynthesis , Animals , Antineoplastic Agents/pharmacology , Cell Growth Processes/physiology , Cell Line, Tumor , Cell Respiration/physiology , Drug Synergism , Glycerolphosphate Dehydrogenase/biosynthesis , Glycerolphosphate Dehydrogenase/genetics , HCT116 Cells , Heterografts , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/pathology , PC-3 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism
20.
Front Oncol ; 9: 539, 2019.
Article in English | MEDLINE | ID: mdl-31316912

ABSTRACT

Diagnosis of the presence of tumors and subsequent prognosis based on tumor microenvironment becomes more clinically practical because tumor-adjacent tissues are easy to collect and they are more genetically homogeneous. The purpose of this study was to identify new prognostic markers in prostate stroma that are near the tumor. We have demonstrated the prognostic features of FGFR1, FRS2, S6K1, LDHB, MYPT1, and P-LDHA in prostate tumors using tissue microarrays (TMAs) which consist of 241 patient samples from Massachusetts General Hospital (MGH). In this study, we investigated these six markers in the tumor microenvironment using an Aperio Imagescope system in the same TMAs. The joint prognostic power of markers was further evaluated and classified using a new algorithm named Weighted Dichotomizing. The classifier was verified via rigorous 10-fold cross validation. Statistical analysis of the protein expression indicated that in tumor-adjacent stroma FGFR1 and MYPT1 were significantly correlated with patient outcomes and LDHB showed the outcome-association tendency. More interestingly, these correlations were completely opposite regarding tumor tissue as previously reported. The results suggest that prognostic testing should utilize either tumor-enriched tissue or stroma with distinct signature profiles rather than using mixture of both tissue types. The new classifier based on stroma tissue has potential value in the clinical management of prostate cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...